Механическая система с одной степенью свободы совершает малые колебания. За обобщенную координату принят угол поворота шкива j. Система состоит из ступенчатого шкива с отношением радиусов

, груза массы m и пружины жесткости С. На рисунке механизм находится в равновесии при

.

Принять:

,

, считать

- малыми, массой шкива пренебрегаем.
Записать дифференциальное уравнение малых колебаний (Уравнение Лагранжа – II рода).