Дифференциальное уравнение вида:

называется дифференциальным уравнением первого порядка. Для решения уравнения
такого типа используют подстановку

, тогда

Сделав подстановку в исходное уравнение, нужно вынести за скобки

и выражение, стоящее в скобках, приравнять к нулю.
Решив полученное дифференциальное уравнение, найдем

Затем решаем оставшееся дифференциальное уравнение с разделяющимися переменными.
Тогда решением (общим интегралом) дифференциального уравнения

является …