Пусть – произвольное множество универсальное – произвольное подмножество – дополнения множества ...: ответ на тест 853008 - Математика
Пусть – произвольное множество (универсальное), – произвольное подмножество, – дополнения множества до множества (разность множеств и ).
Если , и , то доказательство включения образует последовательность приведённых эквивалентностей …
Варианты ответов
По определению операции пересечения, соотношение и эквивалентно (равносильно) соотношению
(кратко: ).
Из определения операции дополнения множества следует, что утверждения и эквивалентны (равносильны)
(кратко: ).
Учитывая определение дополнения, можно утверждать, что соотношение и равносильно (эквивалентно) соотношению и
(кратко: ).
Утверждение эквивалентно (равносильно) утверждению и , что непосредственно следует из определения операции объединения множеств
(кратко: ).
Правильный ответ
Помогли ответы? Ставь лайк 👍
Расскажи другу:
Вопрос задал(а): Анонимный пользователь, 13 Ноябрь 2020 в 15:19 На вопрос ответил(а): Анастасия Степанова, 13 Ноябрь 2020 в 15:19