Для регрессионной модели , где – нелинейная функция, – рассчитанное по модели значение переменной , получены значения дисперсий: . Не объяснена моделью часть дисперсии переменной , равная …
Варианты ответов
0,904
0,106
0,096
10,4
Правильный ответ
Помогли ответы? Ставь лайк 👍
Расскажи другу:
Вопрос задал(а): Анонимный пользователь, 13 Ноябрь 2020 в 17:27 На вопрос ответил(а): Анастасия Степанова, 13 Ноябрь 2020 в 17:27
Для регрессионной модели , где – нелинейная функция, – рассчитанное по модели значение переменной , получены значения дисперсий: . Не объяснена моделью часть дисперсии переменной , равная …
Для регрессионной модели , где – нелинейная функция, – рассчитанное по модели значение переменной , получено значение индекса корреляции R = 0,64. Моделью объяснена часть дисперсии переменной , равная …
По результатам проведения исследования торговых точек было построено уравнение нелинейной регрессии , где y – спрос на продукцию, ед.; x – цена продукции, руб. Если фактическое значение t-критерия Стьюдента составляет –2,05, а критические значения для данного количества степеней свободы равны , , , то …
при уровне значимости можно считать, что эластичность спроса по цене составляет –0,8
при уровне значимости можно считать, что эластичность спроса по цене составляет –0,8
эластичность спроса по цене составляет –0,8
при уровне значимости можно считать, что эластичность спроса по цене составляет –0,8
При расчете уравнения нелинейной регрессии , где y – спрос на продукцию, ед.; x – цена продукции, руб., выяснилось, что доля остаточной дисперсии в общей меньше 20%. Коэффициент детерминации для данной модели попадает в отрезок минимальной длины …
По 20 регионам страны изучалась зависимость уровня безработицы y (%) от индекса потребительских цен x (% к предыдущему году) и построено уравнение в логарифмах исходных показателей: . Коэффициент корреляции между логарифмами исходных показателей составил . Коэффициент детерминации для модели в исходных показателях равен …