Для приближенного решения дифференциального уравнения с начальным условием можно воспользоваться м...: ответ на тест 936435 - Математика
Для приближенного решения дифференциального уравнения
с начальным условием можно воспользоваться методом Эйлера:
.
Тогда для уравнения при начальном условии с шагом
h = 0,1 и точностью до сотых равно …
Варианты ответов
1,21
0,85
Правильный ответ
Помогли ответы? Ставь лайк 👍
Расскажи другу:
Вопрос задал(а): Анонимный пользователь, 13 Ноябрь 2020 в 16:31 На вопрос ответил(а): Анастасия Степанова, 13 Ноябрь 2020 в 16:31
Для приближенного решения дифференциального уравнения
с начальным условием можно воспользоваться методом Эйлера:
.
Тогда для уравнения при начальном условии с шагом
h = 0,1 и точностью до сотых равно …
Для приближенного решения дифференциального уравнения
с начальным условием можно воспользоваться методом Эйлера:
.
Тогда для уравнения при начальном условии с шагом
h = 0,1 и точностью до сотых равно …
Для приближенного решения дифференциального уравнения
с начальным условием можно воспользоваться методом Эйлера:
.
Тогда для уравнения при начальном условии с шагом
h = 0,1 и точностью до сотых равно …
Для приближенного решения дифференциального уравнения
с начальным условием можно воспользоваться методом Эйлера:
.
Тогда для уравнения при начальном условии с шагом
h = 0,1 и точностью до сотых равно …
Для приближенного решения дифференциального уравнения
с начальным условием можно воспользоваться методом Эйлера:
.
Тогда для уравнения при начальном условии с шагом
h = 0,1 и точностью до десятых равно …
Известно, что стороны прямоугольника равны 122 см и 58 см. Для упрощения
вычислений эти числа были округлены до 120 см и 60 см.
Была найдена площадь S = 120∙60 = 7200 кв. см. Полученный результат имеет относительную погрешность равную …