Кинетическая энергия системы с двумя степенями свободы равна где и – обобщенные координаты и - о...: ответ на тест 595904 - Теоретическая механика
Кинетическая энергия системы с двумя степенями свободы равна , где и – обобщенные координаты, и - обобщенные силы, соответствующие обобщенным координатам. Ускорение системы по уравнениям Лагранжа при и равно …
Варианты ответов
1
0,25
0,5
-0,25
Правильный ответ
Помогли ответы? Ставь лайк 👍
Расскажи другу:
Вопрос задал(а): Анонимный пользователь, 10 Ноябрь 2020 в 20:31 На вопрос ответил(а): Анастасия Степанова, 10 Ноябрь 2020 в 20:31
Кинетическая энергия системы с двумя степенями свободы равна , где и – обобщенные координаты, и - обобщенные силы, соответствующие обобщенным координатам. Ускорение системы по уравнениям Лагранжа при и равно …
Кинетическая энергия системы с двумя степенями свободы равна , где и – обобщенные координаты, и - обобщенные силы, соответствующие обобщенным координатам. Ускорение системы по уравнениям Лагранжа при и равно …
Кинетическая энергия системы с двумя степенями свободы равна , где и – обобщенные координаты, и - обобщенные силы, соответствующие обобщенным координатам. Ускорение системы по уравнениям Лагранжа при и равно …
Кинетическая энергия системы с двумя степенями свободы равна , где и – обобщенные координаты, и - обобщенные силы, соответствующие обобщенным координатам. Ускорение системы по уравнениям Лагранжа при и равно …
Кинетическая энергия системы с двумя степенями свободы равна , где и – обобщенные координаты, и - обобщенные силы, соответствующие обобщенным координатам. Ускорение системы по уравнениям Лагранжа при и равно …
Кинетическая энергия системы с двумя степенями свободы равна , где и – обобщенные координаты, и - обобщенные силы, соответствующие обобщенным координатам. Ускорение системы по уравнениям Лагранжа при и равно …